LLM большие языковые модели что это такое и как работают
Во-вторых, эти модели демонстрируют адаптируемость, поскольку их можно точно настроить с минимальными конкретными данными полевого обучения. Собранные данные проходят первоначальную обработку, которая включает в себя разделение и синтаксический анализ предложений, что делает их пригодными для дальнейших шагов. Как только соответствующие веб-сайты определены, Shaip использует свой собственный инструмент для сбора данных с этих сайтов. Обучение с учителем использует данные, которые были помечены входными и выходными данными, в отличие от обучения без учителя, которое не использует помеченные выходные данные.
Понимание того, как работают языковые модели
Языковые модели на основе n-грамм аппроксимировали вероятность следующего слова, используя счётчики n-грамм и методы сглаживания. https://auslander.expert/ Для улучшения этого подхода были предложены feedforward архитектуры нейронных сетей (feedforward neural networks), чтобы аппроксимировать вероятность слова. Большие языковые модели, или LLM (Large Language Models), — это алгоритмы машинного обучения, которые могут обрабатывать и генерировать текст на естественном языке. Обучение LLM моделей происходит на колоссальных объемах текстовой информации, что позволяет им анализировать структуру языка, распознавать смысл слов, предложений и даже контекста. Большая языковая модель (LLM) — это тип нейронной сети, предназначенной для понимания, генерации человеческого языка и манипулирования им. Анализ мненийПрименение больших языковых моделей в анализе отзывов и эмоциональных откликов клиентов дает возможность понимать потребности и ожидания аудитории и корректировать подходы к продуктам или услугам. Разрабатывайте модели, используя обширные многоязычные наборы данных в сочетании с соответствующими транскрипциями для перевода текста на разные языки. Этот процесс помогает устранить языковые препятствия и способствует доступности информации. Если модель узкоспециализированная, то и данные для нее берут определенного формата, например научные статьи по конкретной теме или комментарии в интернете. А, например, всем известная ChatGPT обучалась на данных очень разного формата, чтобы стать универсальной. В последние годы в области искусственного интеллекта (ИИ) наблюдается стремительный прогресс, особенно в области обработки естественного языка (NLP). В авангарде этих достижений находятся большие языковые модели (LLM), которые произвели революцию в том, как машины понимают и генерируют человеческий язык. В этой статье рассматриваются тонкости LLM, исследуются их архитектура, функционирование, приложения и проблемы, которые они создают.
Сила обработки естественного языка
- На самом деле, модель уже имеет некоторое «видение» того, каким будет ее итоговый ответ, ещё до его формирования.
- Базовая модель отличается тем, что она обучена на обширных наборах данных, часто с помощью механизма самоконтроля, что позволяет этим моделям добиваться превосходства в решении множества задач.
- RNN работают, анализируя каждое входящее слово, отслеживая информацию из более ранних слов, что позволяет им создавать текст, который является связным и подходящим для контекста.
- Преобразование Bard в Gemini не было просто косметическим, это был переход к более эффективной, высокопроизводительной модели ИИ, кульминацией которого станет выпуск самой мощной версии Gemini в декабре 2023 года.
После первоначального обучения модели на большом наборе данных ее можно дополнительно уточнить или «тонко настроить» на меньшем, более конкретном наборе данных. Этот процесс позволяет модели адаптировать свои общие способности понимания языка к более специализированной задаче или контексту. Если же попросить языковую модель создать контекст вокруг токена и оценить ее степень уверенности в том, что она сгенерировала, то она будет более уверена в токенах первого типа, чем второго. То есть когда человек не уверен в токенах первого типа, он создает разноплановый контекст — у языковой модели наоборот. В этом, с одной стороны, наблюдается противоречие с нашей интуицией, с тем, как человек воспринимает, а с другой — у ученых есть дальнейшее поле для исследований. Так как языковые модели хуже справляются с более длинными текстовыми последовательностями. В статье узнаете, как LLM помогает в бизнес-среде, могут ли такие языковые модели обучать сами себя и какие риски есть у LLM. После предварительного обучения модель может быть дополнительно настроена под конкретные задачи с использованием меньших, размеченных датасетов. Это повышает ее эффективность в специфических приложениях, таких как анализ тональности или ответы на вопросы. Например, если обучать модель на литературе об Африке, вполне вероятно, ожидаемым ответом на запрос «сегодня хорошая погода» станет «сегодня не жарко и идет дождь». А если датасетом для обучения станут статьи по метеорологии, ожидаемый результат может выглядеть как «температура +23°, влажность воздуха 60%». Некоторые модели, такие как ChatGPT, проходят стадию усиления через обратную связь от людей (RLHF). На этом этапе модель оценивается людьми, и на основе этой оценки она корректирует свои ответы, становясь более релевантной и соответствующей ожиданиям пользователей. У языковых моделей большое будущее с возможными приложениями в здравоохранении, юридических услугах, https://siggraph.org поддержке клиентов и других дисциплинах. Другой серьезной проблемой является дезинформация, поскольку языковые модели могут предоставлять убедительную, но неточную информацию, что способствует распространению фальшивых новостей. Ответы на вопросы (QA) — это область обработки естественного языка, ориентированная на автоматические ответы на вопросы на человеческом языке. Системы контроля качества обучаются на обширном тексте и коде, что позволяет им обрабатывать различные типы вопросов, включая фактические, определяющие и основанные на мнениях. Знание предметной области имеет решающее значение для разработки моделей контроля качества, адаптированных к конкретным областям, таким как поддержка клиентов, здравоохранение или цепочка поставок. Однако подходы генеративного контроля качества позволяют моделям генерировать текст без знания предметной области, полагаясь исключительно на контекст. Компании, которые работают с большим объемом текстовых данных, всегда ищут пути автоматизации процессов. Позволяет создавать собственные решения для бизнеса, например чат-ботов и SaaS-платформы. GigaChat применяет банковские протоколы безопасности, а запросы и ответы не сохраняются для последующего использования. При неправильной настройке сервисов возможен несанкционированный доступ к данным, что критично для корпоративных клиентов. Кроме того, необходимы продуманные алгоритмы оптимизации и стратегии обучения для эффективного использования ресурсов. Вместе с дата-сайентистом и биоинформатиком Марией Дьяковой подготовили подробный гайд о том, как устроены самые популярные языковые модели и что нужно знать, чтобы начать с ними работать. Главные недостатки включают вероятность «галлюцинаций» (когда модель придумывает неверные данные) и предвзятость, которая может влиять на содержание ответов.